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Abstract
There has been much recent interest in thermal imaging as a method of non-
destructive testing and for non-invasive medical imaging. The basic idea of
applying heat or cold to an area and observing the resulting temperature change
with an infrared camera has led to the development of rapid and relatively
inexpensive inspection systems. However, the main drawback to date has been
that such an approach provides mainly qualitative results. In order to advance
the quantitative results that are possible via thermal imaging, there is interest
in applying techniques and algorithms from conventional tomography. Many
tomography algorithms are based on the Fourier diffraction theorem, which is
inapplicable to thermal imaging without suitable modification to account for
the attenuative nature of thermal waves. In this paper, the Fourier diffraction
theorem for thermal tomography is derived and discussed. The intent is
for this thermal-diffusion based Fourier diffraction theorem to form the basis
of tomographic reconstruction algorithms for quantitative thermal imaging.

PACS numbers: 02.30.Zz, 02.60.Nm, 05.70.−a, 44.00.00
Mathematics Subject Classification: 80A20, 80A17, 80A23, 45Q05

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to the increasing availability of low-cost high-performance infrared cameras, thermal
imaging has become one of the fastest growing areas of non-destructive testing. These
newer cameras have promoted the development of thermal inspection systems with improved
detection capability and spatial resolution. The basic premise is to apply heat to a material
and to subsequently observe the way the surface temperature evolves in order to glean
information about the internal composition and state of the material. The technique can
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be rapid, relatively inexpensive and, more importantly, has the capability to cover a large area
in a single inspection measurement (Avdelidis et al 2004, Quek and Almond 2005, Quek et al
2005). However, the main shortcoming to date is that thermal imaging is primarily a qualitative
technique. At this point in time, thermal imaging provides good qualitative information about
the material being inspected and less quantitative information about the size, shape and precise
location (specifically, depth) of potential flaws. Additionally, thermal imaging provides less
information about the nature or composition of a material than competing techniques such as
ultrasound. Along with industrial application, thermal wave imaging has also begun to be
applied for medical applications and imaging of biological materials (Telenkov et al 2002).

One of the main research goals in thermal imaging is improved flaw/object definition
through image processing. There have been some attempts to implement tomographic
principles for thermal imaging, with some success (Nicolaides and Mandelis 1997, Nicolaides
et al 1997, Pade and Mandelis 1994). One difficulty with thermal diffusion imaging is that
conventional tomography algorithms are based on the wave equation and thus rely on wave
propagation (be it electromagnetic or acoustic). These algorithms are thus inapplicable to
thermal diffusion phenomena without appropriate modification.

Similar to sound and electromagnetism, conductive heat propagation is governed by a
well-established partial differential equation involving fundamental material parameters such
as heat capacity, thermal conductivity, diffusivity and density. Hence, in principle thermal
studies should be capable of yielding quantitative material characterization information in a
similar manner as its wave-equation-based cousins. Since thermal techniques have shown
themselves capable of generating subsurface information inexpensively and quickly, there
is motivation behind developing the appropriate mathematics to yield quantitative material
information. Tomographic imaging is a possible avenue for extracting quantitative information
from thermal measurements.

One approach to thermal tomography has been based on the use of the pseudowave
propagation analogy. If a harmonically varying thermal source is introduced, the governing
diffusion partial differential equation for heat conduction becomes the Helmholtz pseudowave
equation (Mandelis 2001). The resulting solution is a pseudowave that is highly dispersive
and attenuative. The wave number governing the propagation of this pseudowave is now
complex instead of purely real as with the regular wave equation. It is the complex
nature of the wave number that completely changes the nature of the wave propagation and
renders the conventional tomographic algorithms inapplicable without suitable modification
and interpretation. Mandelis et al have considered this diffusion-based approach to thermal
tomography (Nicolaides and Mandelis 1997, Nicolaides et al 1997, Pade and Mandelis 1994),
where this problem was approached from the point of view of discretizing and inverting
Green’s function. Green’s function was discretized in the spatial domain, without resort to
transformation into a frequency domain. The researchers correctly noted that the problem
is ill-posed and some form of regularization is required. In another approach the use of the
spatial Laplace transform was considered as the potential basis for tomographic algorithms
(Mandelis 1991); however, this approach necessitates the inversion of a Laplace transform, a
non-trivial task. To the best of this author’s knowledge, no tomographic algorithms have been
developed based on the Laplace transform.

The consideration of a Fourier frequency domain approach to thermographic imaging
does not appear to have been previously considered. On the other hand, much of the success
of the conventional tomography is based on the Fourier diffraction theorem (Slaney and Kak
1988). Hence, a Fourier domain approach to thermographic imaging would appear to be
worthy of further investigation. As previously mentioned, due the diffusive nature of thermal
phenomena, the standard Fourier diffraction theorem is inapplicable to thermal tomography
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without suitable adaptation. It is this adaptation that is sought in this paper. The main goal
of this work is to show how the Fourier diffraction theorem can be adapted to accommodate
the diffusion phenomena and thus the complex nature of the wave vector. We approach the
solution of the forward problem using the diffusion Helmholtz equation from the point of
view of (Fourier) diffraction tomography. Detection in a plane is assumed but our problem
formulation does not require plane wave illumination. The forward problem formulation is
then specialized to the case of plane wave illumination in order to derive the thermal version
of the Fourier diffraction theorem. We discuss the region of the three-dimensional (3D)
Fourier transform of the object that is obtained in the detection plane. In this development,
the assumptions regarding geometry and the size of the object are kept similar to those used
in standard diffraction tomography in order to be able to compare the results of the thermal
version of the Fourier diffraction theorem with the well-known results of the standard version.

2. Background theory

The temperature field in a solid is governed by the thermal diffusion equation and is given by

∇ · (K(�r)∇T (�r, t)) − ρ(�r)c(�r)∂T (�r, t)
∂t

= −q(�r, t) in D (1)

where D is the interior of the domain, (�r) is the position vector, t is time, T is the temperature,
q = q(�r, t) is the energy generated per unit volume, K = K(�r) is the thermal conductivity,
ρ(�r) is the density of the material and c(�r) is the specific heat. Recall that

α(�r) = K(�r)
ρ(�r)c(�r) (2)

is the local thermal diffusivity of the material.
This form of the heat equation is more complicated than required. We proceed as in

the case of standard diffraction tomography by considering only one temporal frequency at a
time. This decomposition is accomplished by finding the Fourier transform of the field with
respect to time at each position �r . Noting that the differential equation is linear, the solutions
for different frequencies can be added to find additional solutions. If we additionally assume
that the thermal conductivity does not vary greatly in space, then taking the Fourier transform
leads to the Helmholtz equation

(∇2 + k2(�r))T (�r, ω) = −q(�r, ω)

K(�r) (3)

where

k2(�r) = − iω

α(�r) (4)

is the complex wave number. A couple of notes are in order about the preceding statements.
First, we define the Fourier transform in the conventional way as

F̂ (ω) =
∫ ∞

−∞
f (t) e−iωt dt . (5)

With the inverse transform defined by

f (t) = 1

2π

∫ ∞

−∞
F̂ (ω) eiωt dω. (6)

Secondly, the explicit dependence of T and q on the frequency ω is usually neglected but is
still nevertheless implied. Finally, we note that if harmonic excitation is assumed, this leads
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to the same Helmholtz pseudowave equation as long as the harmonic excitation is assumed
to have the form I (�r, t) = I0(�r) eiωt . If the often-used form of I (�r, t) = I0(�r) e−iωt (note
the change in sign in the exponent) is assumed instead, then the complex wave number is
changed by a minus sign, changing the phase of any resulting calculations. This point has
no analogue in the wave equation as the presence of the double time derivative in the wave
equation leads to the same equation regardless of the sign in the exponent of the assumed
harmonic excitation. Harmonic sources are often used for the generation of thermal waves in
solids (Mandelis 2001). However, the use of a Fourier transform approach does not limit the
time dependence of the source to be harmonic and allows for greater freedom in the analysis
of possible sources that can be used.

For imaging purposes, our main interest lies in inhomogeneous media. We therefore
consider the Helmholtz equation

(∇2 + k2(�r))T (�r) = 0. (7)

We now write

k2(�r) = k2
0n

2(�r) and n2(�r) = α0

α(�r) (8)

where k2
0 = − iω

α0
and α0 is the thermal diffusivity of the assumed homogeneous medium

surrounding the object region Q. Additionally, n(�r) is a measure of the variation of the values
of the thermal diffusivity in the scattering object from that of the surrounding homogeneous
(reference) region. In general, it is assumed that the object has finite size. This leads to(∇2 + k2

0

)
T (�r) = −o(�r)T (�r) (9)

where the object function is given by

o(�r) =
{
k2

0(n
2(�r) − 1) �r ∈ Q

0 �r /∈ Q.
(10)

We note that the preceding follows exactly the development of the diffraction tomography
problem with the wave equation, with the exception of the complex nature of the wave vector.
The effect of the inhomogeneities of the object region appears as a source term on the right-
hand side of the Helmholtz equation (9), with o(�r) being the object function and representing
the inhomogeneities of the scattering object region Q. The object function is zero outside the
object region and its non-zero value represents the ratio of thermal diffusivities inside the
object region.

We will consider the temperature field T(�r) to be the sum of two components, T0(�r) and
Ts(�r), that is

T (�r) = T0(�r) + Ts(�r). (11)

The component T0(�r) is known as the incident field (or equivalently the illumination function)
and is the field present without any inhomogeneities. It is thus given by the solution to(∇2 + k2

0(�r)
)
T0(�r) = 0. (12)

The component Ts(�r), known as the scattered field, will be that part of the total field that can be
attributed solely to the inhomogeneities. The scattered component of the field will necessarily
have to satisfy (∇2 + k2

0

)
Ts(�r) = −o(�r)T (�r). (13)

This scalar Helmholtz equation cannot be solved for Ts(�r) directly, but a solution can be written
in terms of Green’s function:

Ts(�r) =
∫

g(�r|�r0)o(�r0)T (�r0) d�r0. (14)
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Note that the T under the integral sign is the unknown total thermal-wave field and that the
integration must be taken over the domain of interest. Green’s function is a solution of the
differential equation(∇2 + k2

0

)
g(�r|�r0) = −δ(�r − �r0) (15)

and is normally only a function of the difference �r − �r0. An approximate solution for Ts(�r)
can be written using the Born approximation, which is valid for objects that are weakly
inhomogeneous (Slaney and Kak 1988) where the scattering field is weak and much smaller
than the total field. The consequence of the Born approximation is that the unknown total
field under the integral sign can be replaced with the known incident field. Along with the
dependence of Green’s function on the difference of position only, this leads to

Ts(�r) =
∫

g(�r − �r0)o(�r0)T0(�r0) d�r0. (16)

The actual expressions for Green’s function and incident field will depend on the choice of
geometry and background medium. We note again that the development above follows that of
the standard diffraction tomography approach for wavefields that satisfy the wave equation as
both approaches lead to the Helmholtz equation. Where the approach for thermal wave fields
differs is in the nature of the wave vector k which is purely real for waves satisfying the wave
equation but is a complex quantity for thermal wave fields satisfying the heat equation.

Thus far the development has been fairly general and is applicable to various geometries.
As for standard diffraction tomography theory, we now assume a background medium infinite
in extent and an inhomogeneity structure of finite extent. The above equation for the scattered
field is the most general form of the forward problem, valid for all points outside the
inhomogeneity and for arbitrary source–detector configurations. Although the assumption
of an infinite domain may not be the most physically realistic assumption, it is the simplest
case for physical insight and can later be modified for different geometries. As it is also
the assumption made for standard diffraction tomography, this assumption will allow for
straightforward comparisons.

We further specialize our formulation to the case where the scattered thermal-wave is
measured by a plane of detectors. We are interested in the Fourier transform of the wave
measured in the z = zd plane. Since we are interested in detection in one of the z planes, we
will first consider the Weyl expansion for the 3D infinite space Green’s function.

3. Weyl expansion of 3D infinite space Green’s function

Consider a three-dimensional infinite domain. The thermal wave Green’s function satisfies(∇2 + k2
0

)
g(�r|�r0) = −δ(�r − �r0) (17)

where k2
0 = − iω

α0
. The three-dimensional infinite domain Green’s function is given by

(Mandelis 2001, Slaney and Kak 1988)

g(�r|�r0) = eik0|�r−�r0|

4π |�r − �r0| = g(�r − �r0). (18)

By taking the Fourier transform of the partial differential equation (17) with the impulsive
source at �r0 = 0, we can formally write the three-dimensional Fourier transform of Green’s
function as

Ĝ(ωx, ωy, ωz) = 1

ω2
x + ω2

y + ω2
z − k2

0

= 1

ω2
z + γ 2

ω

, (19)
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where γ 2
ω = ω2

x + ω2
y − k2

0 and (ωx, ωy, ωz) are the spatial frequency variables in the Fourier
domain. We can now write Green’s function as the inverse Fourier transform of its Fourier
transform:

g(�r) = 1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1

ω2
z + γ 2

ω

eiωxx eiωyy eiωzz dωx dωy dωz

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
eiωxx eiωyy dωx dωy

1

2π

∫ ∞

−∞

1

ω2
z + γ 2

ω

eiωzz dωz. (20)

The integral over spatial frequency ωz can be done by using residue theory. There are two
poles in the integral over ωz, namely ωz = ±iγω = ±i(γωr + iγωi), where γωr denotes the
real part of γω and γωi denotes the imaginary part. We define γωr and γωi such that γωr >

0. For z > 0, we require the imaginary part of ωz (which is γωr ) to be >0 in order to ensure
convergence of the integral over ωz; therefore ωz = +iγω. Therefore, we choose the pole in
the upper half plane and a contour integral in the counterclockwise direction in the upper half
plane:

1

2π

∫ ∞

−∞

1

ω2
z + γ 2

ω

eiωzz dωz = 1

2π
2π i

e−γωz

2iγω

= e−γωz

2γω

z > 0. (21)

Similarly, for z < 0 we require the imaginary part of ωz < 0 for convergence so that ωz = −iγω .

Therefore we choose the pole in the lower half plane and a clockwise contour integral in the
lower half plane. The clockwise integral will introduce an extra minus sign when using the
residue theory. Therefore, for z < 0 we have

1

2π

∫ ∞

−∞

1

ω2
z + γ 2

ω

eiωzz dωz = 1

2π
(−2π i)

eγωz

−2iγω

= eγωz

2γω

z < 0. (22)

Combining the two expressions for z > 0 and z < 0, we can write the inner integral more
compactly as

1

2π

∫ ∞

−∞

1

ω2
z + γ 2

ω

eiωzz dωz = e−γω |z|

2γω

. (23)

Therefore Green’s function in an infinite three-dimensional domain can be written as

g(�r) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

e−γω |z|

2γω

eiωxx eiωyy dωx dωy. (24)

Note that it is important for convergence reasons to define γω as the square root of
γ 2

ω = ω2
x + ω2

y − k2
0 such that the real part of γω is positive. We clearly recognize the

inverse Fourier transform in the ωx and ωyvariables in the above expression. Therefore, taking
the forward Fourier transform of Green’s function with respect to x and y only (so that x →
ωx and y → ωy) yields the Weyl expansion for Green’s function as

g(ωx, ωy, z) = e−γω |z|

2γω

. (25)

The Weyl expansion is effectively a Fourier transform of Green’s function (18) with respect
to the x and y variables only so that we are looking at Green’s function in frequency space
for x and y but real space for z. The utility of this expression becomes apparent when using a
detection scheme such that the signal is detected on a plane for which z is a constant.
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3.1. Alternative derivation of Weyl expansion

The above development suggests a simpler derivation to the Weyl expansion. We start once
again with the definition of Green’s function with an impulse source at 0:(∇2 + k2

0

)
g(�r) = −δ(�r) = −δ(x)δ(y)δ(z). (26)

We take the Fourier transform of both sides of the above equation; however, this time only
with respect to the x and y variables leaving the z variable untransformed. This gives(

d2

dz2
+

(
k2

0 − ω2
x − ω2

y

))
g(ωx, ωy; z) = −δ(z)

(
d2

dz2
− γ 2

ω

)
g(ωx, ωy; z) =

(
d2

dz2
+ (iγω)2

)
g(ωx, ωy; z) = −δ(z).

(27)

We now observe that this is simply the equation for a one-dimensional Green’s function in an
infinite domain and we can immediately write (Mandelis 2001)

g(ωx, ωy, z) = e−γω |z|

2γω

. (28)

This is the same expression we previously obtained through a more laborious derivation.
Once again, the definition of γω as the square root of γ 2

ω = ω2
x + ω2

y − k2
0 such that the real

part of γω is positive is crucial in order to keep Green’s function well behaved at infinity.
Furthermore, we note that a consequence of the real part of γω being positive is that the
amplitude decays exponentially as a function of distance z away from the point source.
Plane waves with large spatial frequencies will thus have negligible amplitudes. This is a
characteristic difference between thermal waves and ordinary ultrasound waves. The thermal
plane waves will be scattered by the inhomogeneities and their resulting amplitudes and phases
will carry information about the structure of the inhomogeneity.

4. Fourier diffraction theorem

Armed with the Weyl expansion for the 3D infinite space Green’s function, we now proceed
to derive the thermal Fourier diffraction theorem. We start once again with the first Born
approximation, expressed in terms of the differential equation formulation of the problem:(∇2 + k2

0

)
Ts(�r) = −o(�r)T0(�r). (29)

Recall that the first Born approximation is only valid when the scattered field is much smaller
than the incident field. We now take the Fourier transform of the governing equation where
the Fourier transform is taken in terms of the x and y variables only. The z variable is not
transformed since we have restricted our interest to detecting the scattered wave in a z =
constant plane. Fourier transformation leads to(

d2

dz2
+

(
k2

0 − ω2
x − ω2

y

))
Ts(ωx, ωy; z) = −O(ωx, ωy; z)T0(ωx, ωy; z)

(
d2

dz2
+ (iγω)2

)
Ts(ωx, ωy; z) = −O(ωx, ωy; z)T0(ωx, ωy; z).

(30)

The above equation is a simple ODE in the variable z with ωx, ωy as parameters. Green’s
function is exactly that given by the Weyl expansion as derived above. Therefore, the solution
to this equation can be immediately written as

Ts(ωx, ωy; z) =
∫ ∞

−∞
O(ωx, ωy; z′)T0(ωx, ωy; z′)

e−γω |z−z′ |

2γω

dz′. (31)
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This equation tells us that the scattered thermal wave is a convolution of the Weyl function
(which is really an expression of Green’s function) with the product of the object and
illumination functions. Let us refer to this product of the object function with the illumination
function as the heterogeneity function. The above equation implies that at any given spatial
frequency ωx, ωy , the heterogeneity function can be thought of as the source terms for the
scattered waves. The plane waves arising from different depths z′ propagate along the
z direction to the detection plane. During propagation, these waves experience different
amplitude and phase variations which are given by e−γω |zd −zj |

2γω
for a source located at z = zj

and detected at z = zd . The scattered thermal wave detected at the plane z = zd is thus a
sum (integral) of the plane waves originating from the heterogeneity functions at different
depths. The propagation of the heterogeneity function at different depths is weighted by the
amplitude attenuation and phase shift given by the Weyl expansion of Green’s function. The
amplitude and phase of the Weyl expansion depend on the spatial frequencies ωx, ωy as well
as the distance between the detection plane and the source term. As the spatial frequencies
ωx, ωy increase, the amplitude of the Weyl expansion decays more quickly and thus Green’s
function effectively acts as a low pass filter for spatial frequencies.

The integral over z′ is an integral over the entire object function (recall that the object
function becomes zero where there is no inhomogeneity). We assume that the detection does
not occur anywhere in the object so that in the above equation z will be either greater than
z′(detection in transmission) or less than z′ (reflection detection).

Thus for z > object (detection in transmission) we can write

Ts(ωx, ωy; z) = e−γωz

2γω

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
o(x ′, y ′, z′)T0(x

′, y ′, z′) e−ix ′ωx e−iy ′ωy e+γωz′
dx ′ dy ′ dz′

= e−γωz

2γω

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
o(x ′, y ′, z′)T0(x

′, y ′, z′)

× e+γωr z
′
e−ix ′ωx e−iy ′ωy e+iγωiz

′
dx ′ dy ′ dz′

= e−γωz

2γω

F3D{o(�r)T0(�r) e+γωr z}|ωz=−γωi
z > object. (32)

Similarly for z < object (reflection detection), we can write

Ts(ωx, ωy; z) = e+γωz

2γω

F3D{o(�r)T0(�r) e−γωr z}|ωz=+γωi
z< object. (33)

In the above equations, F3D represents the three-dimensional Fourier transform, where now
we have transformed with respect to x, y and z. The above says that the two-dimensional
(2D) Fourier transform of the scattered thermal wave detected in a plane is proportional to
the 3D Fourier transform of the heterogeneity function multiplied by an exponential term
and evaluated at ωz = −γωi , the imaginary part of γωi . This proportionality term is the
now-familiar Weyl expansion, depending on γω, which in turn depends on the relative sizes
of the spatial frequencies and the thermal wave number. This is the statement of the Fourier
diffraction theorem for thermal waves.

Following the development for the standard diffraction theorem, we now further specialize
to the case of plane wave illumination. For the case of plane wave illumination, this implies

T0(�r) = e±ik0z = e±i(kr +iki )z. (34)

Note that the wave number is now complex and we have written it as k0 = kr + iki to express
this. We define k0 to be the root of k2

0 such that the imaginary part of k0 is positive. Care must
be taken with the signs in order to express the physical fact that the wave attenuates with
distance, which implies greater care with the assumption of the geometry than in the ultrasound
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case. With purely real k2
0 as for ultrasound, this care in not necessary as the exponent does not

have a decay term and the wave amplitude oscillates without attenuation. In this instance, let us
assume that the inhomogeneity is located somewhere such that z > 0 and that the illumination
is from the left so that we can assume T0(�r) = e+ik0z = e+i(kr +iki )z.

With this expression for the illumination function, we can now write for z > the object
function (detection in transmission):

Ts(ωx, ωy; z) = e−γωz

2γω

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
o(x ′, y ′, z′) ei(kr +iki )z

′

× e+γωr z
′
e−ix ′ωx e−iy ′ωy e+iγωiz

′
dx ′ dy ′ dz′

= e−γωz

2γω

F3D{o(�r) e(−ki+γωr )z}|ωz=−kr−γωi
z > object. (35)

Similarly for z < object function (reflection detection), we can write

Ts(ωx, ωy; z) = eγωz

2γω

F3D{o(�r) e(−ki−γωr )z}|ωz=−kr +γωi
z < object. (36)

This is the statement of the Fourier diffraction theorem for thermal waves and specialized to
plane wave illumination.

5. Discussion

Equations (32) and (33) are the most general form of the Fourier diffraction theorem for
thermal waves. It can be readily observed that the triple integrals are scaled Fourier integrals
evaluated at (ωx, ωy,±γωi) of the object function multiplied by both the illumination function
and an exponential function. The negative sign is taken for measurements in transmission and
the positive sign for reflection measurements. The exponential decay is due to the attenuative
property of thermal waves. It can also be noted that the only mathematical operations occurring
in the integrand are multiplications of functions.

Equations (35) and (36) are the statement of the Fourier diffraction theorem for thermal
waves where the illumination function has been specialized to plane wave illumination. Note
that the triple integrals are scaled Fourier integrals evaluated at (ωx, ωy, kr ±γωi) of the object
function multiplied by an exponential function. Once again, the negative sign is taken for
measurements in transmission and the positive sign for reflection measurements.

A two-dimensional version of the standard Fourier diffraction theorem can be found in
(Slaney and Kak 1988). In order to compare their result with the one found here, we rewrite
the standard Fourier diffraction theorem in three-dimensions and using the same notation as
in the current development. This gives

Ts(ωx, ωy; z) = e−iγωiz

2γω

F3D{o(�r)}|ωz=−kr−γωi
z > object (37)

Ts(ωx, ωy; z) = eiγωiz

2γω

F3D{o(�r)}|ωz=−kr +γωi
z < object. (38)

We note when comparing the thermal wave version of the Fourier diffraction theorem with
the standard Fourier diffraction theorem that the thermal wave version differs primarily by
additional exponential terms. There is an additional overall exponential attenuation term
outside the integrals that is a function of the location of the plane of detection. The
triple integrals are the Fourier transform of the object multiplied by a frequency-dependent
attenuating exponential. This is entirely due to the complex nature of the wave vector k. If
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k were purely real, as is the case for acoustic or electromagnetic waves, then the attenuating
exponentials would become unity because both ki and γωr become zero. Thus the triple
integrals become the Fourier transform of the object, the attenuating exponential becomes
unity and the thermal Fourier diffraction theorem becomes the standard Fourier diffraction
theorem.

It remains to determine which values of the three-dimensional Fourier transform of the
object are contained in the Fourier transform of the detected image. Let us define the thermal
diffusion length of a material as (Mandelis 2001)

µ = µ(ω) =
√

2α

ω
. (39)

We note that both k0 and γ ω depend on the thermal diffusion length only. That is to say,
they depend on the ratio of thermal diffusivity to frequency and not on each of those values
independently. The effect of decreasing thermal diffusivity is seen to be similar to that of
increasing frequency, both leading to smaller thermal diffusion lengths.

In all cases, for a given (temporal) frequency ω, a three-dimensional subsurface of the
full 3D Fourier transform of the object (multiplied by the appropriate exponential) is obtained.
For the sake of brevity, we refer to this product of the true object multiplied by the exponential
as the object. To clarify the statement of the Fourier diffraction theorem, the object’s full 3D
Fourier transform is a function of (ωx, ωy, ωz), with each of those spatial frequency variables
being independent of the other. However, what we have detected on the plane of detection
is a portion of this 3D transform on a subsurface defined by ωz = (−kr ± γωi), depending
on whether the measurement was made in transmission or reflection. This implies that data
at different angles are needed to reconstruct a unique image of the three-dimensional object.
The Nyquist sampling theorem will determine the number of required angles. This also
explains the ill-posed nature of the problem as observed by other researchers (Nicolaides and
Mandelis 1997, Nicolaides et al 1997). By making one set of measurements (in transmission
or reflection), only a certain portion of the object’s three-dimensional Fourier transform has
been determined. This is insufficient to uniquely determine the object and leads to an ill-posed
problem if an attempt is made to invert the data based on those measurements alone.

Let us examine the shape of the subsurface defined by ωz = (−kr ±γωi) for several values
of thermal diffusion length. In the limiting case of ω = 0 (the low frequency regime), we
note that region is essentially the ωz = 0 plane. In theory, this would permit easy multi-look
Fourier plane reconstruction because no interpolation step is required to map the region into
a rectilinear coordinate system. From (39) we see that ω = 0 also implies infinite thermal
diffusion length, or as the frequency gets smaller the thermal diffusion length gets longer and
the portion of the 3D Fourier transform that we are detecting approaches a plane. For higher
temporal frequencies, the region will be a partly curved region and will require interpolation
for exact multi-look Fourier plane reconstruction in a rectilinear coordinate system. Figures
1 and 2 show a representative shape of the Fourier region in question. We note that it is
indeed a curved region with a peak at the origin and then flattening out to a plane at areas
far away from the origin. The size of the ‘hump’, that is to say the non-plane region, is
dependent on the thermal diffusion length. The smaller the thermal the diffusion length, then
the wider and higher is the hump. So for long thermal diffusion lengths (or equivalently, low
frequencies) the Fourier region in question approaches a plane. This is illustrated in figures 3
and 4 for measurements made in transmission and reflection respectively, where the Fourier
region is shown for ωy = 0 for clarity. For a given value of the thermal diffusion length,
as both ωx and ωy approach infinity (that is to say, as we move away from the origin), then
γωi → 0, ωz → − 1

µ
. So as we move away from the origin, the Fourier region approaches
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Figure 1. Shape of the 3D Fourier region detected in transmission.

Figure 2. Shape of the 3D Fourier region in reflection.

a ωz constant plane where that constant is given by the inverse of the thermal diffusion length.
We also note that this trend is the opposite as that observed for traditional tomography with
ultrasonic waves. In traditional tomography, as the frequency is increased, then the Fourier
region begins to approach a plane as the sphere in the traditional Fourier region gets flatter
and flatter (Slaney and Kak 1988).

6. Applicability of the result

The generation and detection of thermal waves can be done in several ways and is well
documented in the literature (Almond and Patel 1996, Mandelis 2001)

A brief overview is given here. An external stimulus is applied to generate a relevant
temperature difference which can be detected and used for quantification purposes. A typical
experimental set-up might be as seen in figure 5. Several approaches to the generation of
thermal waves use periodically modulated laser excitation. However, pulse heating or step
heating may also be used. In general, thermal wave studies aim to detect a surface temperature
increase due to exponentially attenuated laser excitation and thermal wave scattering due to
subsurface inhomogeneities.
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Figure 3. Plot of ωz (with ωy = 0) for different thermal diffusion lengths for measurements in
transmission.

Figure 4. Plot of ωz (with ωy = 0) for different thermal diffusion lengths for measurements in
reflection.

For pulse heating, the material is subject to a pulse of light with duration ranging from
a few milliseconds to a few seconds, depending on the thermal conductivity of the material.
The temperature of the material first rises during the pulse and then decays because the energy
propagates by thermal diffusion. The presence of a defect or object will reduce the rate
of diffusion locally. Point, line or surface detection of the thermal response are possible
(Maldague 2002). For step heating, the evolution of temperature is monitored during the
application of a long, low power pulse. Periodic (sinusoidal) stimulation can also be used.
This latter mode is referred to as lock-in thermography. The lock-in terminology refers
to the necessity to monitor the exact time dependence between the output signal and the
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Figure 5. Typical experimental set-up for generation of thermal waves (Maldague 2002).

reference input signal (i.e. the modulated heating). The resulting oscillating temperature field
is remotely recorded through its thermal infrared emission. The amplitude and phase of the
resulting thermal wave on the specimen can then be observed.

We have shown in previous sections that the Fourier transform of the image on the
detection plane is a portion of the full 3D transform of the object. To show that the Fourier
diffraction theorem for thermal waves can be used as a basis to develop a reconstruction
algorithm, it suffices to show that it is possible to obtain the rest of the full 3D (spatial)
transform of the object by suitable choice of experimental configuration. This could be done
either by making measurements at different view angles (as is done for x-ray tomography) or
by changing the frequency of the illumination—or a combination of both. The change in the
illumination frequency can theoretically be achieved with broadband illumination (say pulse
heating) and finding the Fourier transform of the time-evolution of the signal. Alternatively, the
lock-in approach can be used to make narrow band measurements for a choice of frequencies.
Once sufficient 3D Fourier transform data are obtained, the object function can be recovered
by spatial 3D inverse Fourier transformation—with the meaning of sufficient being left for
investigation under the considerations for the design of an inversion algorithm.

To investigate the achievable coverage of the full 3D Fourier transform, we consider the
coverage of the Fourier plane in the first case for varying frequency but fixed view. This could
be accomplished with pulse, step or sinusoidal heating. For the sake of clarity, ωy = 0
is assumed so that only the ωx − ωz spatial frequency plane is considered, essentially
considering a 2D problem instead of 3D. This assumption is made since the analysis would
be very similar for the full 3D case but plots in the ωx–ωz are clearer. It should be noted
that the 2D case would apply if the object and illumination functions were assumed to vary
slowly in the y direction and could thus be considered independent of y. In the 2D case, the
z detection plane becomes a z detection line. The case for general (unspecified) illumination
is shown in figure 6, for which equations (32) or (33) would apply. The case for plane wave
illumination is shown in figure 7, for which equations (35) or (36) would apply. In the case
of general illumination, the illumination function will need to be known for use after the
application of the inverse Fourier transform. From figure 6 (general illumination), we see that
as frequency is increased, more and more coverage of the Fourier plane is achieved for both
transmission and reflection measurements. Full coverage of the Fourier plane is a sufficient
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(a) (b)

Figure 6. Coverage of Fourier space for constant view and variable frequency. General illumination
is assumed.

(a) (b)

Figure 7. Coverage of Fourier space for constant view and variable frequency. Plane wave
illumination.

condition for successful Fourier inversion to occur. The case of plane wave illumination is
considered in figure 7. In this case, we see that for measurements made in transmission,
complete coverage of the Fourier plane is possible as frequency is increased. However, for
measurements made in reflection, complete coverage of the Fourier plane does not occur and
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(a) Fourier coverage with rotation, plane wave
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(b) Fourier coverage with rotation, general illumination

Figure 8. Coverage of Fourier space for constant frequency and multiple view angles.
Measurements made in reflection.

low frequency data are missing. This observation leads to the question: how is it possible to
obtain less coverage of the Fourier plane with a known (plane) illumination function than with
general (unspecified) illumination? The answer to this apparent conundrum is that in the case
of a known illumination function, the information contained in this function has been removed
from the Fourier (detection) plane. Hence, all the remaining information in the Fourier plane
is about the object function. However, for the case of general (unspecified) illumination, the
information in the Fourier plane includes information about the illumination function, and this
additional information would have to be removed in order to obtain information about only
the object function.

As a separate case, we consider the case of making measurements at a fixed (temporal)
frequency but at different view angles. This sort of set-up would be similar to those used
in x-ray or ultrasound tomography. It must, however, be kept in mind that thermal waves
are highly attenuated and do not travel as far as ultrasound. We consider the case of making
measurements in reflection or transmission and then obtaining measurements at different view
angles, with angles varying from 0 to 2π . The feasibility of this will depend on the sample
in question and the given experimental set-up. However, we pursue an idealized situation
where data can be obtained from any angle. The reflection results are shown in figure 8 for
both general and plane wave illumination. We see that better coverage of the Fourier plane is
obtained for the case of plane wave illumination as the general illumination leaves a disc-like
gap of data at low frequencies. In comparison, the transmission results are shown in figure 9
for both general and plane wave illumination. For the transmission case, the opposite is true
with the general illumination giving better coverage of the Fourier plane than plane wave
measurements which leave a low frequency disc of missing data. We note that these results
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(a) Fourier coverage with rotation, plane wave, transmission measurement
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(b) Fourier coverage with rotation, general illumination, transmission measurement

Figure 9. Coverage of Fourier space for constant frequency and multiple view angles.
Measurements made in transmission.

are opposite to those that were found for the case of a single view and multiple frequency
measurements. For instance, for reflection measurements with plane-waves, poor coverage
of the frequency plane was obtained with single view and multiple frequencies but better
coverage is obtained with multiple views at a single frequency. It is obvious from this analysis
that the choice of illumination function affects the coverage obtained in the Fourier plane, and
thus the resolution with which it is possible to perform imaging. Neither transmission nor
reflection measurements, plane wave or general illumination, nor single view versus multiple
views offer a complete solution to the problem of obtaining data for the entire Fourier plane.
However, by suitably choosing the geometry and the illumination function, coverage of the
entire Fourier plane is possible, so we have shown that thermographic-based tomography is
possible. Detailed considerations need to be given to experimental and algorithmic design in
order to ensure that enough data have been acquired in order to enable Fourier inversion and
thus imaging. Although the intent of this paper was to demonstrate that the Fourier diffraction
theorem can be adapted for use for thermal imaging, it has also become obvious the Fourier
diffraction theorem can greatly aid in experimental design. By using the Fourier diffraction
theorem, we can determine how the choice of geometry and illumination function affect the
coverage of the Fourier plane and thus what it should be theoretically possible to ‘see’ using
thermal imaging.

7. Summary and conclusions

In this paper, we have presented the Fourier diffraction theorem for thermal waves. The
theorem was presented for the case of a three-dimensional infinite-space domain, in parallel
with the traditional development of the standard Fourier diffraction theorem for fields satisfying
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the wave equation. The theorem was presented for the cases of both general illumination
function and then further specialized to the case of plane wave illumination. It was shown that
the values of the 3D Fourier transform of the object (multiplied by an attenuating exponential)
that are contained in the Fourier transform of the image on the detection plane are located on
the ωz = 0 plane for low temporal frequencies and on a curved surface for higher temporal
frequencies. Because these are subsurfaces of the full 3D Fourier transform, data at different
angles and/or different frequencies are necessary to uniquely reconstruct an object. The
present work can be used as a basis for developing diffusion-based diffraction tomographic
reconstructions algorithms, in a manner similar to the use of the traditional Fourier diffraction
theorem. It has also been shown that the choice of detection geometry and the form and
frequency of the illumination function greatly affect the obtained coverage of the Fourier
domain. The amount of coverage of the spatial Fourier domain is what ultimately determines
what it is possible to image. The present work can also be used to aid in experimental design
where it can be determined a priori how the choice of geometry and illumination function will
affect any obtained image.
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